Supplemental Documentation Sheet

<u>Plans</u>

Storm drain easement pipe chart:

PIPE SIZE (FT)		MAXIMUM PIPE INVERT DEPTH (FT) MINIMUM EASEMENT WIDTH (FT)											
NA	4	5	6	7	8	9	10	11	12	13	14	15	16
1.25	20	20	20	20	20	25	25	30	30	30	35	35	40
1.5	20	20	20	20	20	25	25	30	30	30	35	35	40
2.0	20	20	20	20	20	25	25	30	30	30	35	35	40
2.5	20	20	20	20	25	25	25	30	30	35	35	35	40
3.0	20	20	20	20	25	25	25	30	30	35	35	35	40
3.5	NA	20	20	20	25	25	30	30	30	35	35	40	40
4.0	NA	20	20	20	25	25	30	30	30	35	35	40	40
4.5	NA	NA	20	25	25	25	30	30	35	35	35	40	40
5.0	NA	NA	20	25	25	25	30	30	35	35	35	40	40
5.5	NA	NA	NA	25	25	30	30	30	35	35	40	40	40
6.0	NA	NA	NA	25	25	30	30	30	35	35	40	40	40

Contour scale:

Map Scale	Ground slope	Contour interval (ft)			
	Flat: 0-2%	0.5 or 1			
1"=100', or larger	Rolling: 2-8%	1 or 2			
	Steep: 8%+	2, 5, or 10			

Riprap Apron Summary:

Headwall ID	Pipe diameter	Riprap size	Apron Length	Width of Apron
	(Do)	(d ₅₀)	(La)	(W=Do+La)
A				

Riprap Basin Details:

		· · ·		
Headwall ID	Pool Length, ft	Basin Length,	Approach	Basin Thickness,
	(> of 10 h _s or	ft	Thickness, ft,	ft, 2D ₅₀
	3W _o)	(> of 15h _s or	3D ₅₀	
		4W _o)		
Α				

Baffled Outlet Details/Dimensions:

Head wall ID	Fr	W	L	f	е	Н	а	b	С
A									

<u>Hydro</u>

			Г	low Summa	ſy			
Basin	Return	Pre-	Routed	By-pass	Post –	Ponding	10%	10%
	Frequenc	developed	flow	flow	develope	elevation	point pre-	point
	У	flow @			d flow		develope	post-
		property			(routed +		d flow	develope
		line			bypass)			d flow
					@			
					property			
					line			
	1							
	2							
	5							
А	10							
	25							
	50							
	100							

\mathbf{E}^{1} C.

Energy Dissipation Summary:

	<i>C</i> ;	*	*	
Pipe	25 year post	Non-erosive	Froude	Type of
outlet	developed	velocity from	Number	Energy
headwall	flow velocity	Storm Water		Dissipation
/	at outlet	Design		Measures
Detentio	headwall	Manual		proposed
n pond				
outlet				
А				
В				
С				

Downstream receiving conveyance velocity summary:

Study	25 year pre-	25 year post-	Non-erosive	Current	Adverse	Detention
point/	developed	developed	velocity from	condition	impact	necessary?
hydraulic	flow velocity	flow velocity	Storm Water	of the	expected	-
structure/			Design	channel	from	
Basin			Manual	(appear	proposed	
				stable or is	project	
				it eroding)		
А						
В						
С						

Times of Concentration Summary:

Sub-area	Pre/Post	Pre/Post	Pre/Post	Pre-	Post-
	Overland	Shallow	Open	developed	developed
	flow,	Concentrated	channel	Tc, minutes	Tc, minutes
	minutes	flow, minutes	flow,		
			minutes		
A-1	25/15	35/20	10/10	70	45
A-2					

Curve Number Summary:

Sub-area	Pre-	Post-					
	developed	developed					
	Curve	Curve Number					
	Number						
A-1							
A-2							

Gutter Spread Calculations Summary: (for roadways, max to be 8')

СВ	Max spread, ft
1	
2	

Maximum flow into street					
STREET CLASSIFICATION	ALLOWABLE PEAK FLOW RATE FOR A 2-YEAR STORM				
Local	2.0 cfs				
Minor Collector	1.0 cfs				
Other	0.5 cfs				

Energy Dissipater

Energy dissipater	Froude Number range
Riprap apron	Less than or equal to 2.5
Riprap outlet basins	Less than or equal to 2.5
Baffled outlets	1 to 9

Equation to size the orifice:

 $A = (V/t)/(0.6*(64.4*H/2)^{0.5}) \text{ where } t = 86,400 \text{ sec.}$ $A = \text{area of the orifice, ft}^2$ H = height above the centroid of the orifice $V = 1 \text{-yr channel protection volume, ft}^3$

Outlet control structure pipe sizes are required based on outlet orifice diameters .

Orifice Diameter	Minimum Pipe Diameter			
< 3"	6"			
3" to < 5"	8"			
5" to 11"	12"			

Pond OCS Diagram

	1	2	3	4	5	6	7	8
Pond ID	WQV	50% WQV	Water	1 year	Channel	Н	Routed	2 thru 25-
	required/	ponding	Quality	storm	protectio	Height of	Channel	yr-
	provided	elev. (2 nd	volume	orifice	n volume	CPV	protection	detention
	(c.f.)	line in	ponding	invert	elev.	above the	elevation	orifice
		above fig.)	elev. (3 rd	elev. (3 rd	(Use	centroid	(4 th line in	invert
			line in	line in	Direct	of the	above	elev. (4 th
			above	above	runoff	orifice	fig.)	line in
			fig.)	fig.)	volume	(ft.) to use		above
					from 1-yr	equation		fig.)
					storm.)	in		
						comment		
						27 below.		
Exampl	2500/284	945.23	947.50	947.50	956.00	8.5	955.5	956.00
е	0							
А								
В								

Water Quality Volume Calculation:

$$WQ_{R} = 1.2"*(R_{v})$$

R_v = 0.05 + (I)*.009
WQ_v = WQ_{R}*A
12

Calculation to size the outlet orifice for a 24-hour drawdown time:

A = (WQV/t)/(0.6*(64.4*H/2) 0.5)where t = 86,400 sec. A = area of the orifice, ft2 H= height above the centroid of the orifice (ft.) WQV = water quality volume, ft3

1	2	3	4	5	6	7	8	9
Pond ID	Total	%	WQv	Permanent	Permanen	Water	1-year	Direct
	Drainage	imperviou	required	Pool	t pool	Quality	storm	runoff
	area to	s	(c.f.)	volume	elev. /	volume	orifice	from 1-
	facility			(c.f.)	water	ponding	invert	year storm
	(ft^2)			(must be >	quality	elev. (3 rd	elev./orifi	(in.; from
				or = 50%	orifice	line in	ce size (3 rd	fig. 2-4
				WQ_V)	size (2 nd	above	line in	SWDM)
					line in	fig.)	above fig.)	
					above	_		
					fig.)			
Example	3,789,720	75	274,754	261,000	945.23 /	945.39	945.39/	2.4
-					5"		12"	
А								
В								

10	11	12	13	14	15	16	17	18	19
Channel	Н	Routed	2 thru 25-	Permane	Mean	Maximu	Perm	Length/w	Forebay
protectio	Height of	Channel	yr.	nt pool	depth	m depth	pool	idth ratio	volume
n volume	CPV	protectio	detention	surface	(ft) (col.	(ft; must	surface	of	required /
elev.	above the	n	orifice	area	5/col. 12)	be < or =	area/drai	permanen	provided
(Use	centroid	elevation	invert	(ft^2)	(must be	12)	nage area	t pool	(ft^3)
volume	of the	(4 th line	elev. (4 th		between		ratio	(must be	
reported	orifice	in above	line in		3 & 7 ft)		(must be	> or = 2)	
in	(ft.) to	fig.)	above				>0.01)		
column	use		fig.)						
9.)	equation								
	in								
	comment								
	27 below								
954.01	8.62	953.80	954.01	87,120	3	5	0.023	3	26,100 /
									28,426

Calculations for Water Quality Volume:

$$WQ_{R} = 1.2^{"*}(R_{v})$$

 $R_{v} = 0.05 + (I)^{*}.009$
 $WQ_{v} = \underline{WQ_{R}} ^{*}A$
12

Where: WQ_R = water quality runoff (watershed inches) R_v = the weighted volumetric runoff coefficient I = Percent Impervious as a whole number A = on-site area (ft²) Forebay calculation volume, however, the volume need not exceed 10% of the permanent pool volume.

FBV = (0.1) 1.2(Rv)A_T/12 Where Rv = 0.05 +I(0.009) I = Percent Impervious as a whole number A_T =Total area draining to facility (ft²)

Calculation to size the channel protection outlet orifice for a 24-hour drawdown time.

 $A = (V/t)/(0.6^*(64.4^*H/2)^{0.5})$

where t = 86,400 sec. $A = \text{area of the orifice, ft}^2$ H = height above the centroid of the orifice (ft.) $V = \text{channel protection volume, ft}^3$

<u>Flood</u>

When floodplain encountered is not FEMA related (i.e. is not shown as floodplain on the FIRM maps but is a drainage area greater than 100 acres), and NO encroachment in the floodplain is proposed, flood study shall contain the following:

Cross	Water	Water
Secti	surface	surface
on	elevatio	Elevatio
statio	n based	n based
n	on	on
	existing	future
	hydrolog	hydrolog
	У	У
1+00		
2+00		
3+00		

When Floodplain encountered is not FEMA related (i.e. is not shown as floodplain on the FIRM maps but is a drainage area greater than 100 acres), but encroachment IS proposed, Flood Study shall contain the following:

Cross	Mannin	Pre	Post-	Pre-	Post
Sectio	g's 'n'	develop	develop	develop	develope
n	channel	ed	ed	ed	d Water
station		Water	Water	Water	surface
		surface	surface	surface	elevation
		elevatio	Elevatio	elevatio	based on
		n based	n based	n based	future
		on	on	on	hydrology
		existing	existing	future	*
		hydrolog	hydrolog	hydrolog	
		У	У*	У*	
1+00					
2+00					

Proposed floodplain storage (end area) calculations based on maximum 100' cross section spacing (or other approved methods) (include cross sections in report) showing that flood storage capacity will not be reduced by the proposed grading. Following is an example:

Cross	Pre-	Averag	Channe	Pre-	Post-	Average	Channel	Post
Sectio	encroac	e area,	I length,	encroac	encroac	area, S.F.	length, ft	encroac
n	hment	S.F.	ft	hment	hment		_	hment
station	wetted			Volume,	wetted			Volume,

	area,			c.f.	area,			c.f.
	5.F.				5.F.			
1+00	5000				4200			
		6271	100	627,100		6350	100	635,000
2+00	7542				8500			

When floodplain encountered is FEMA related (i.e. is shown as floodplain on the FIRM maps), and NO encroachment in the floodplain is proposed, flood study shall contain the following:

Cross	Q ₁₀₀	Q ₁₀₀	Mannin	Water	Water
Secti	Using	Using	g's 'n'	surface	surface
on	existing	future	Channe	elevatio	Elevatio
statio	hydrolo	hydrology	*	n based	n based
n	gy*	(2020		on	on
		Land Use)		existing	future
		*		hydrolog	hydrolog
				У*	У
1+00					
2+00					
3+00					

*This information from FIS, Flood Insurance Study

When Floodplain encountered is FEMA related (i.e. is shown as floodplain on the FIRM maps), and encroachment in the floodplain IS proposed, Flood Study shall contain the following:

Cross	Q ₁₀₀	Q ₁₀₀	Mannin	Pre	Post-	Pre-	Post
Section	Using	Using	g's 'n'	develop	develope	develope	developed
station	existing	future	channel	ed	d Water	d Water	Water
	hydrolog	hydrolog	*	Water	surface	surface	surface
	У*	y (2020		surface	Elevation	elevation	elevation
		Land		elevatio	based on	based on	based on
		Use) *		n based	existing	future	future
				on	hydrolog	hydrolog	hydrology
				existing	У	У*	
				hydrolo			
				gy*			
1+00							
2+00							

*This information from FIS, Flood Insurance Study

Proposed floodplain storage (end area) calculations based on maximum 100' cross section spacings (or other approved methods) (include cross sections in report) showing that flood storage capacity will not be reduced by the proposed grading. Following is an example:

Cross	Pre-	Averag	Channe	Pre-	Post-	Average	Channel	Post
Sectio	encroac	e area,	I length,	encroac	encroac	area, S.F.	length, ft	encroac
n	hment	S.F.	ft	hment	hment			hment
station	wetted			Volume,	wetted			Volume,
	area,			c.f.	area,			c.f.
	S.F.				S.F.			
1+00	5000				4200			
		6271	100	627,100		6350	100	635,000
2+00	7542				8500			

Flow Summary

				1		
Basin (as shown on drainage area maps)	Return Frequency	Drainage area to receiving structure (ac)	Receiving structure type	Pre- developed flow (cfs)	Post- developed flow (cfs)	Calculated percent increase (%)
	2					
	5					
А	10					
	25					
	50					
	100					

Energy Dissipation Summary:

Pipe outlet	25 year post-	Non-erosive	Froude	Type of Energy
headwall /	developed flow	velocity from	Number	Dissipation
Detention	velocity at outlet	Storm Water		Measures
pond outlet	headwall	Design Manual		proposed
А				
В				

Downstream receiving conveyance velocity summary:

Study	25 year pre-	25 year post-	Non-erosive	Current	Adverse	Detention
point/	developed	developed	velocity from	condition	impact	necessary?
hydraulic	flow velocity	flow velocity	Storm Water	of the	expected	
structure			Design	channel	from	
/ Basin			Manual	(appear	proposed	
				stable or is	project	
				it eroding)		
А						
В						

Times of Concentration Summary:

				1	
Sub-area	Pre/Post	Pre/Post	Pre/Post	Pre-	Post-
	Overland	Shallow	Open	developed	developed
	flow,	Concentrated	channel	Tc, minutes	Tc, minutes
	minutes	flow, minutes	flow,		
			minutes		
A-1	25/15	35/20	10/10	70	45
A-2					

Curve Number Summary:

Sub-area	Existing	Post-	
	Curve	developed	
	Number	Curve Number	
A-1			
A-2			

Gutter Spread Calculations Summary:

СВ	Max spread, ft
1	
2	